Kehrig et al. 2018 Journal Club – February 15, 2019 Grace Olivier

The extended He II λ_4686 emission in the extremely metal-poor galaxy SBS 0335-052E seen with MUSE

Epoch of Reionization

First stars and quasars started ionizing the hydrogen in the universe.

These Pop III stars would be very low metallicity (Z ~ o).

He II at 1640 Å and 4686 Å is an indicator of low metallicity.

First Stars and Reionization Era

SBS 0335-052E

What is it?

Starburst-y galaxy first discovered in 1990.

Where is it?

54 Mpc away.

Why do we care?

Has nebular He II emission.

Extremely low metallicity (Z \sim 3-4% Z_{Sun}).

Excellent local analog of EoR galaxy.

MUSE & Chandra

• MUSE on VLT (Image credit: R. Bacon)

• 4600-9366 A

• R =2988

Chandra X-ray Observatory
 (Image credit:NASA/CXC/SAO & J.Vaughan)

• o.6-5.0 keV

Why MUSE?

Spatially resolved He II.

Why MUSE?

Shape of the He II emission

Why MUSE?

Using this integrated spectrum they calculate Q(He II).

 $Q(He II) = 3.17 \times 10^{51} \text{ photons/s}$

X-ray emission

Hard X-rays: (1.4-5.0 keV) near SSCs – $Q(He II) = 1.6 \times 10^{36} \text{ phot/s}$

Soft X-rays: (0.6-1.4 keV) near shell $- \Omega(He II) = 2.5 \times 10^{35} \text{ phot/s}$

$Q(He II) = 3.17 \times 10^{51} \text{ phot/s}$

Origin of the Emission

X-ray emission

Hard X-rays: (1.4-5.0 keV) near SSCs – Q(He II) = 1.6×10^{36} phot/s

Soft X-rays: (0.6-1.4 keV) near shell – $Q(He II) = 2.5 \times 10^{35}$ phot/s

X-ray emission

Line Ratio Diagnostics

BPT diagram for every spaxel.

Solidly star-forming.

Line Ratio Diagnostics

BPT diagram for every spaxel.

Solidly star-forming.

Hot Ionizing Stars Continua

Wolf-Rayet stars

Discovered new knot of 7

Q(He II) = 4.4 x 10⁴⁸ phot/s
~7000 WRs needed

$Q(He II) = 3.17 \times 10^{51} phot/s$

Origin of the Emission

Hot Ionizing Stars Continua

Wolf-Rayet stars

Discovered new knot of 7 $O(He II) = 4.4 \times 10^{48} \text{ phot/s}$ ~7000 WRs needed

Hot Ionizing Stars Continua

Wolf-Rayet stars
Single stars
Non-rotating
Need:

150 M_{Sun}: 16,000

300 M_{Sun} : 360

Hot Ionizing Stars Continua

Wolf-Rayet stars

Single stars

Non-rotating

Rotating

Need:

294 M_{Sun} : 430

With Z=o stars:

150 M_{Sun} : 230

Hot Ionizing Stars Continua

Wolf-Rayet stars

Single stars

Binary Population and Spectral Synthesis (BPASS)

Scaling masses to stellar mass in SSCs, no 5% Z_{Sun} models account for Q(He II)

BUT, 0.05% Z_{Sun} models do:

Top-heavy IMFs with masses up to 100 and 300 M_{sun} work!

Origin of the Emission ct metallicity work.

Scontinua

Set stars

Binary Population and Spectral Synthesis (BPASS)

No stellar models with

Conclusions

SBS 0335-052E is one of the best local analogs of EoR galaxies.

Extreme He II emission:

Q(He II) = 3.17 x 10⁵¹ photons/s

Not from X-ray emitting gas.

Not from shocks or AGN like features.

It is likely from continuum emission from massive stars.

Unfortunately only very low metallicity ($Z = 0.05\% Z_{Sun}$) models match this emission.

Unlikely that extreme low metallicity stars are in a Z ~ 3-4% Z_{Sun} galaxy.

Comments

All models for extremely low metallicity are theoretical extrapolations.

The models necessary for this study don't exist yet.

Epoch of Reionization galaxies are a main science driver for many next generation telescopes like JWST and ELT. Understanding local analogs is the first step.